03/12/2025 15:56 Next.js 16 | Next.js

A NEXT.s Q

& Back to Blog

Tuesday, October 21st 2025

Next.js 16

Posted by
Jimmy Lai Josh Story Sebastian Markbage Tim Neutkens
@feedthejim @joshcstory @sebmarkbage @timneutkens

Ahead of our upcoming Next.js Conf 2025 7, Next.js 16 is now available.

This release provides the latest improvements to Turbopack, caching, and the Next.js
architecture. Since the previous beta release, we added several new features and

improvements:

Cache Components: New model using Partial Pre-Rendering (PPR) and use cache for

instant navigation.

Next.js Devtools MCP: Model Context Protocol integration for improved debugging
and workflow.

Proxy: Middleware replaced by proxy.ts to clarify network boundary.

DX: Improved logging for builds and development requests.

For reminder, those features were available since the previous beta release:

Turbopack (stable): Default bundler for all apps with up to 5-10x faster Fast Refresh,
and 2-5x faster builds

Turbopack File System Caching (beta): Even faster startup and compile times for the
largest apps

React Compiler Support (stable): Built-in integration for automatic memoization

Build Adapters API (alpha): Create custom adapters to modify the build process

https://nextjs.org/blog/next-16 1/15

03/12/2025 15:56 Next.js 16 | Next.js
« Enhanced Routing: Optimized navigations and prefetching with layout deduplication
and incremental prefetching

e Improved Caching APIs: New updateTag() and refined revalidateTag()
« React19.2: View Transitions, useEffectEvent(), <Activity/>

e Breaking Changes: Async params, next/image defaults, and more

Upgrade to Next.js 16:
>_ terminal O

Use the automated upgrade CLI
npx @next/codemod@canary upgrade latest

...o0or upgrade manually
npm install next@latest react@latest react-dom@latest

...or start a new project
npx create-next-app@latest

For cases where the codemod can't fully migrate your code, please read the upgrade
guide.

New Features and Improvements

Cache Components

Cache Components are a new set of features desighed to make caching in Next.js both
more explicit, and more flexible. They center around the new "use cache" directive,
which can be used to cache pages, components, and functions, and which leverages the

compiler to automatically generate cache keys wherever it's used.

Unlike the implicit caching found in previous versions of the App Router, caching with
Cache Components is entirely opt-in. All dynamic code in any page, layout, or API route is
executed at request time by default, giving Next.js an out-of-the-box experience that's

better aligned with what developers expect from a full-stack application framework.

Cache Components also complete the story of Partial Prerendering (PPR), which was first
introduced in 2023. Prior to PPR, Next.js had to choose whether to render each URL

https://nextjs.org/blog/next-16 2/15

03/12/2025 15:56 Next.js 16 | Next.js
statically or dynamically; there was no middle ground. PPR eliminated this dichotomy, and
let developers opt portions of their static pages into dynamic rendering (via Suspense)
without sacrificing the fast initial load of fully static pages.

You can enable Cache Components in your next.config.ts file:

next.config.ts O

const nextConfig = {
cacheComponents: true,

IR

export default nextConfig;

We will be sharing more about Cache Components and how to use them at Next.js Conf
2025 7 on October 22nd, and we will be sharing more content in our blog and

documentation in the coming weeks.

Note: as previously announced in the beta release, the previous experimental experimental.ppr
flag and configuration options have been removed in favor of the Cache Components configuration.

Learn more in the documentation here.

Next.js Devtools MCP

Next.js 16 introduces Next.js DevTools MCP, a Model Context Protocol integration for Al-
assisted debugging with contextual insight into your application.

The Next.js DevTools MCP provides Al agents with:

¢« Next.js knowledge: Routing, caching, and rendering behavior
« Unified logs: Browser and server logs without switching contexts
 Automatic error access: Detailed stack traces without manual copying

« Page awareness: Contextual understanding of the active route

This enables Al agents to diagnose issues, explain behavior, and suggest fixes directly

within your development workflow.

Learn more in the documentation here.

https://nextjs.org/blog/next-16

3/15

03/12/2025 15:56 Next.js 16 | Next.js

proxy.ts (formerly middleware.ts)

proxy.ts replaces middleware.ts and makes the app’s network boundary explicit.
proxy.ts runs on the Node.js runtime.

¢ What to do: Rename middleware.ts — proxy.ts and rename the exported
function to proxy . Logic stays the same.

e Why: Clearer naming and a single, predictable runtime for request interception.

proxy.ts

export default function proxy(request: NextRequest) {
return NextResponse.redirect(new URL('/home', request.url));

Note: The middleware.ts file is still available for Edge runtime use cases, but it is deprecated and
will be removed in a future version.

Learn more in the documentation here.

Logging Improvements

In Next.js 16 the development request logs are extended showing where time is spent.

e Compile: Routing and compilation

¢« Render: Running your code and React rendering

https://nextjs.org/blog/next-16 4/15

03/12/2025 15:56 Next.js 16 | Next.js

17ms
19ms
19ms
17ms
18ms
17ms
22ms
24ms

/
/
/
/
/
/
/
/

The build is also extended to show where time is spent. Each step in the build process is

now shown with the time it took to complete.

>_ terminal O

A Next.js 16 (Turbopack)

v Compiled successfully in 615ms

v Finished TypeScript in 1114ms

v Collecting page data in 208ms

v Generating static pages in 239ms

v Finalizing page optimization in b5ms

The following features were previously announced in the beta release:

Developer Experience
Turbopack (stable)

Turbopack has reached stability for both development and production builds, and is now
the default bundler for all new Next.js projects. Since its beta release earlier this summer,

https://nextjs.org/blog/next-16 5/15

03/12/2025 15:56 Next.js 16 | Next.js

adoption has scaled rapidly: more than 50% of development sessions and 20% of
production builds on Next.js 15.3+ are already running on Turbopack.

With Turbopack, you can expect:

o 2-5x faster production builds

e Up to 10x faster Fast Refresh

We're making Turbopack the default to bring these performance gains to every Next.js
developer, no configuration required. For apps with custom webpack setups, you can
continue using webpack by running:

>_ terminal (O

next dev --webpack
next build --webpack

Turbopack File System Caching (beta)

Turbopack now supports filesystem caching in development, storing compiler artifacts on
disk between runs for significantly faster compile times across restarts, especially in large
projects.

Enable filesystem caching in your configuration:

next.config.ts O

const nextConfig = {
experimental: {
turbopackFileSystemCacheForDev: true,
,
13

export default nextConfig;

All internal Vercel apps are already using this feature, and we've seen notable

improvements in developer productivity across large repositories.

We'd love to hear your feedback as we iterate on filesystem caching. Please try it out and
share your experience.

Simplified create-next-app

https://nextjs.org/blog/next-16 6/15

03/12/2025 15:56 Next.js 16 | Next.js
create-next-app has been redesigned with a simplified setup flow, updated project
structure, and improved defaults. The new template includes the App Router by default,
TypeScript-first configuration, Tailwind CSS, and ESLint.

Build Adapters API (alpha)

Following the Build Adapters RFC 7, we've worked with the community and deployment
platforms to deliver the first alpha version of the Build Adapters API.

Build Adapters allow you to create custom adapters that hook into the build process,
enabling deployment platforms and custom build integrations to modify Next.js

configuration or process build output.

next.config.js O

const nextConfig = {
experimental: {
adapterPath: require.resolve('./my-adapter.js'),
¥
>

module.exports = nextConfig;

Share your feedback in the RFC discussion 7.
React Compiler Support (stable)

Built-in support for the React Compiler is now stable in Next.js 16 following the React
Compiler's 1.0 release. The React Compiler automatically memoizes components, reducing
unnecessary re-renders with zero manual code changes.

The reactCompiler configuration option has been promoted from experimental to
stable. It is not enabled by default as we continue gathering build performance data across
different application types. Expect compile times in development and during builds to be

higher when enabling this option as the React Compiler relies on Babel.

next.config.ts (O

https://nextjs.org/blog/next-16 7115

03/12/2025 15:56 Next.js 16 | Next.js

const nextConfig = {
reactCompiler: true,

1

export default nextConfig;

Install the latest version of the React Compiler plugin:

>_ terminal (O

npm install babel-plugin-react-compiler@latest

Core Features & Architecture

Enhanced Routing and Navigation

Next.js 16 includes a complete overhaul of the routing and navigation system, making page
transitions leaner and faster.

Layout deduplication: When prefetching multiple URLs with a shared layout, the layout is
downloaded once instead of separately for each Link. For example, a page with 50 product
links now downloads the shared layout once instead of 50 times, dramatically reducing
the network transfer size.

Incremental prefetching: Next.js only prefetches parts not already in cache, rather than
entire pages. The prefetch cache now:

Cancels requests when the link leaves the viewport

Prioritizes link prefetching on hover or when re-entering the viewport

Re-prefetches links when their data is invalidated

Works seamlessly with upcoming features like Cache Components

Trade-off: You may see more individual prefetch requests, but with much lower total
transfer sizes. We believe this is the right trade-off for nearly all applications. If the
increased request count causes issues, please let us know. We're working on additional
optimizations to inline data chunks more efficiently.

These changes require no code modifications and are designed to improve performance

across all apps.

https://nextjs.org/blog/next-16 8/15

03/12/2025 15:56 Next.js 16 | Next.js

Improved Caching APIs

Next.js 16 introduces refined caching APIs for more explicit control over cache behavior.

revalidateTag() (updated)

revalidateTag() now requires a cachelLife profile 7 as the second argument to enable
stale-while-revalidate (SWR) behavior:

import { revalidateTag } from 'next/cache';

// B4 Use built-in cachelLife profile (we recommend 'max' for most cases)
revalidateTag('blog-posts', 'max');

// Or use other built-in profiles
revalidateTag('news-feed', 'hours');
revalidateTag('analytics', 'days');

// Or use an inline object with a custom revalidation time
revalidateTag('products', { expire: 3600 });

// A Deprecated - single argument form
revalidateTag('blog-posts');

The profile argument accepts built-in cacheLife profile names (like 'max', 'hours',

'days') or custom profiles 7 defined in your next.config. You can also pass aninline {
expire: number } object. We recommend using 'max' for most cases, as it enables
background revalidation for long-lived content. When users request tagged content, they
receive cached data immediately while Next.js revalidates in the background.

Use revalidateTag() when you want to invalidate only properly tagged cached entries
with stale-while-revalidate behavior. This is ideal for static content that can tolerate

eventual consistency.

Migration guidance: Add the second argument with a cacheLife profile (we recommend 'max')
for SWR behavior, or use updateTag() in Server Actions if you need read-your-writes semantics.

updateTag() (new)

updateTag() is a new Server Actions-only API that provides read-your-writes semantics,

expiring and immediately reading fresh data within the same request:

https://nextjs.org/blog/next-16 9/15

03/12/2025 15:56 Next.js 16 | Next.js

'use server';
import { updateTag } from 'next/cache';

export async function updateUserProfile(userId: string, profile: Profile) {
await db.users.update(userId, profile);

// Expire cache and refresh immediately - user sees their changes right away
updateTag(user-${userld});

This ensures interactive features reflect changes immediately. Perfect for forms, user
settings, and any workflow where users expect to see their updates instantly.

refresh() (new)

refresh() is anew Server Actions-only API for refreshing uncached data only. It doesn't
touch the cache at all:

'use server';
import { refresh } from 'next/cache';

export async function markNotificationAsRead(notificationId: string) {
// Update the notification in the database
await db.notifications.markAsRead(notificationId);

// Refresh the notification count displayed in the header
// (which is fetched separately and not cached)
refresh();

This APl is complementary to the client-side router.refresh() .Use it when you need to
refresh uncached data displayed elsewhere on the page after performing an action. Your
cached page shells and static content remain fast while dynamic data like notification

counts, live metrics, or status indicators refresh.
React 19.2 and Canary Features

The App Router in Next.js 16 uses the latest React Canary release 7, which includes the
newly released React 19.2 features and other features being incrementally stabilized.

Highlights include:

https://nextjs.org/blog/next-16 10/15

03/12/2025 15:56 Next.js 16 | Next.js

o View Transitions 7 : Animate elements that update inside a Transition or navigation

e useEffectEvent 7:Extract non-reactive logic from Effects into reusable Effect Event

functions

e Activity 7 : Render "background activity" by hiding Ul with display: none while
maintaining state and cleaning up Effects

Learn more in the React 19.2 announcement 2.

Breaking Changes and Other Updates

Version Requirements

Change Details

Node.js 20.9+ Minimum version now 20.9.0 (LTS); Node.js 18 no longer supported
TypeScript 5+ Minimum version now 5.1.0

Browsers Chrome 111+, Edge 111+, Firefox 111+, Safari 16.4+

Removals

These features were previously deprecated and are now removed:

Removed Replacement

AMP support All AMP APIs and configs removed (useAmp , export const
config = { amp: true })

next lint command Use Biome or ESLint directly; next build no longer runs
linting. A codemod is available: npx @next/codemod@canary
next-lint-to-eslint-cli .

devIndicators options appIsrStatus, buildActivity, buildActivityPosition
removed from config. The indicator remains.

serverRuntimeConfig, Use environment variables (.env files)
publicRuntimeConfig

experimental.turbopack Config moved to top-level turbopack (no longerin
location experimental)

experimental.dynamicIO flag Renamed to cacheComponents

https://nextjs.org/blog/next-16

11/15

03/12/2025 15:56

Removed

experimental.ppr flag

export

const

experimental_ppr

Automatic scroll-behavior:

smooth

unstable_rootParams()

Sync params, searchParams
props access

Sync cookies() , headers(),
draftMode() access

Metadata image route params
argument

next/image local src with query

strings

Behavior Changes

Next.js 16 | Next.js
Replacement

PPR flag removed; evolving into Cache Components
programming model

Route-level PPR export removed; evolving into Cache
Components programming model

Add data-scroll-behavior="smooth" to HTML document to
opt back in

We are working on an alternative API that we will ship in an
upcoming minor

Must use async: await params, await searchParams

Must use async: await cookies(), await headers(),
await draftMode()

Changed to async params ; id from
generateImageMetadata now Promise<string>

Now requires images.localPatterns config to prevent
enumeration attacks

These features have new default behaviors in Next.js 16:

Changed Behavior

Default bundler

images.

images.

images.

images.

images.

minimumCacheTTL default

imageSizes default

qualities default

dangerouslyAllowLocallIP

maximumRedirects default

https://nextjs.org/blog/next-16

Details

Turbopack is how the default bundler for all apps; opt out with
next build --webpack

Changed from 60s to 4 hours (14400s); reduces revalidation
cost for images without cache-control headers

Removed 16 from default sizes (used by only 4.2% of
projects); reduces srcset size and API variations

Changed from [1..100] to [75]; quality prop is now
coerced to closest value in images.qualities

New security restriction blocks local IP optimization by
default; set to true for private networks only

Changed from unlimited to 3 redirects maximum; setto 0 to
disable or increase for rare edge cases

12/15

03/12/2025 15:56 Next.js 16 | Next.js

Changed Behavior Details

@next/eslint-plugin-next Now defaults to ESLint Flat Config format, aligning with ESLint
default v10 which will drop legacy config support

Prefetch cache behavior Complete rewrite with layout deduplication and incremental

prefetching

revalidateTag() signature Now requires cachelLife profile as second argument for
stale-while-revalidate behavior

Babel configuration in Turbopack Automatically enables Babel if a babel config is found
(previously exited with hard error)

Terminal output Redesigned with clearer formatting, better error messages,
and improved performance metrics

Dev and build output directories next dev and next build now use separate output
directories, enabling concurrent execution

Lockfile behavior Added lockfile mechanism to prevent multiple next dev or
next build instances on the same project

Parallel routes default.js All parallel route slots now require explicit default.js files;
builds fail without them. Create default.js that calls
notFound() orreturns null for previous behavior

Modern Sass API Bumped sass-loader to vi16, which supports modern Sass
syntax and new features

Deprecations

These features are deprecated in Next.js 16 and will be removed in a future version:

Deprecated Details

middleware.ts filename Rename to proxy.ts to clarify network boundary and routing focus

next/legacy/image Use next/image instead for improved performance and features

component

images.domains config Use images.remotePatterns configinstead for improved security
restriction

revalidateTag() single Use revalidateTag(tag, profile) for SWR, or updateTag(tag)

argument in Actions for read-your-writes

Additional Improvements

https://nextjs.org/blog/next-16 13/15

03/12/2025 15:56 Next.js 16 | Next.js
« Performance improvements: Significant performance optimizations for next dev

and next start commands

¢ Node.js native TypeScript for next.config.ts : Run next dev, next build,and
next start commands with --experimental-next-config-strip-types flag to

enable native TypeScript for next.config.ts.

We'll aim to share a more comprehensive migration guide ahead of the stable release in

our documentation.

Feedback and Community

Share your feedback and help shape the future of Next.js:

e GitHub Discussions 7
e GitHub Issues 7

e Discord Community 7

Contributors

Next.js is the result of the combined work of over 3,000 individual developers. This release

was brought to you by:

e The Next.js team: Andrew 7, Hendrik #, Janka ?, Jiachi 7, Jimmy 72, Jiwon 7, JJ 7,
Josh 7, Jude 7, Sam ?, Sebastian 7, Sebbie 7, Wyatt ?, and Zack 7.

e The Turbopack team: Benjamin 7, Josh 7, Luke 7, Niklas 7, Tim 7, Tobias 7, and Will

z -
e The Next.js Docs team: Delba 7, Rich 7, Ismael 7, and Joseph 7.

Huge thanks to @mischnic, @timneutkens, @unstubbable, @wyattjoh, @Cy-Tek,
@lukesandberg, @OoMNoO, @ztanner, @icyJoseph, @huozhi, @gnoff, @ijjk, @povilasy,
@dwrth, @obendev, @aymericzip, @devjiwonchoi, @SyMind, @vercel-release-bot,
@Shireee, @epsilon, @dharun36, @kachkaev, @bgw, @yousefdawood7, @TheAlexLichter,
@sokra, @ericx0099, @leerob, @Copilot, @fireairforce, @fufuShih, @anvibanga, @hayes,

https://nextjs.org/blog/next-16 14/15

03/12/2025 15:56 Next.js 16 | Next.js

@Milancen123, @martinfrancois, @lubieowoce, @gaojude, @lachlanjc, @liketiger, @styfle,
@aaronbrown-vercel, @Samii2383, @FelipeChicaiza, @kevva, @miabdullahh, @F7b5,

@Anshuman71, @RobertFent, @poteto, @chloe-yan, @sireesha-siri, @brian-lou, @joao4xz,

@stefanprobst, @samselikoff, @acdlite, @gwkline, @bgub, @brock-statsig, and

@karlhorky for helping!

Avercel Resources More

Docs Next.js Commerce

Support Policy Contact Sales

Learn Community
Showcase GitHub

Blog Releases
Team Telemetry
Analytics Governance
Next.js Conf

Previews

Evals

Subscribe to our newsletter

Stay updated on new releases and
features, guides, and case studies.

you@domain.com Subscribe

© 2025 Vercel, Inc.

O X W

https://nextjs.org/blog/next-16

About Vercel

Next.js + Vercel

Open Source Software
GitHub

Bluesky

X

Legal
Privacy Policy

Cookie Preferences

o B¢

15/15

